Monotonicity of entropy and Fisher information: a quick proof via maximal correlation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monotonicity of Entropy and Fisher Information: A Quick Proof via Maximal Correlation

A simple proof is given for the monotonicity of entropy and Fisher information associated to sums of i.i.d. random variables. The proof relies on a characterization of maximal correlation for partial sums due to Dembo, Kagan and Shepp.

متن کامل

Maximal Monotonicity via Convex Analysis

In his ‘23’ “Mathematische Probleme” lecture to the Paris International Congress in 1900, David Hilbert wrote “Besides it is an error to believe that rigor in the proof is the enemy of simplicity.” In this spirit, we use simple convex analytic methods, relying on an ingenious function due to Simon Fitzpatrick, to provide a concise proof of the maximality of the sum of two maximal monotone opera...

متن کامل

"Infographics" team: Selecting Control Parameters via Maximal Fisher Information

“Infographics” is a very new RoboCup Soccer Simulation League 2D team, based on the released source code of agent2d [1] and Gliders [2,3]. It also uses librcsc (a base library for The RoboCup Soccer Simulator, RCSS [4]); soccerwindow2: a viewer program for RCSS; fedit2: a formation editor for agent2d; and GIBBS: in-browser log-player for 2D Simulation League logs [5]. The Soccer Simulation 2D L...

متن کامل

Generalized information-entropy measures and Fisher information

We show how Fisher’s information already known particular character as the fundamental information geometric object which plays the role of a metric tensor for a statistical differential manifold, can be derived in a relatively easy manner through the direct application of a generalized logarithm and exponential formalism to generalized information-entropy measures. We shall first shortly descr...

متن کامل

Measures of maximal entropy

We extend the results of Walters on the uniqueness of invariant measures with maximal entropy on compact groups to an arbitrary locally compact group. We show that the maximal entropy is attained at the left Haar measure and the measure of maximal entropy is unique.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Information and Systems

سال: 2016

ISSN: 1526-7555,2163-4548

DOI: 10.4310/cis.2016.v16.n2.a2